If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2/3+1=13
We move all terms to the left:
3x^2/3+1-(13)=0
We add all the numbers together, and all the variables
3x^2/3-12=0
We multiply all the terms by the denominator
3x^2-12*3=0
We add all the numbers together, and all the variables
3x^2-36=0
a = 3; b = 0; c = -36;
Δ = b2-4ac
Δ = 02-4·3·(-36)
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{3}}{2*3}=\frac{0-12\sqrt{3}}{6} =-\frac{12\sqrt{3}}{6} =-2\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{3}}{2*3}=\frac{0+12\sqrt{3}}{6} =\frac{12\sqrt{3}}{6} =2\sqrt{3} $
| 1-2x=6x+9 | | 9x-14=5x+4 | | 35=4(3^x) | | x^2+9x=3x+7 | | 6x-4-(x+3)=8 | | 2x-4(x-3)=1 | | M^3+m^2+4m+4=0 | | -4=3x-11/5 | | 9x+33-45+15x=15-3x | | A-1/2=2a-3/4 | | (x+3)^2/3+15=27 | | m/10=4/12 | | k−2=5 | | 81=8j-9+j | | 7x+2=7(3)+2 | | -28=8n-12-4n+8 | | y=10-(2) | | X4+-7x+-12=0 | | y=10-(0) | | 4x^2-5x-39=0 | | 3/4x+2=1/2x-6 | | -40=3x–19 | | -20=b–16 | | 7q+10=-4 | | y=5-(2) | | p–22=5 | | u-17/2=1 | | y=5-(1) | | (4x-2)/35x=1/8 | | y=5-(-1) | | q–8=3 | | -32=-8p |